
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

FEATURES

- Various counting modes
- Asynchronous master reset
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT93 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT93 are 4-bit binary ripple counters. The devices consist of four master-slave flip-flops internally connected to provide a

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

divide-by-two section and a divide-by-eight section. Each section has a separate clock input (\overline{CP}_0 and \overline{CP}_1) to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q_n outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

A gated AND asynchronous master reset (MR_1 and MR_2) is provided which overrides both clocks and resets (clears) all flip-flops.

Since the output from the divide-by-two section is not internally connected to the succeeding stages,

the device may be operated in various counting modes. In a 4-bit ripple counter the output Q_0 must be connected externally to input \overline{CP}_1 . The input count pulses are applied to clock input \overline{CP}_0 . Simultaneous frequency divisions of 2, 4, 8 and 16 are performed at the Q_0 , Q_1 , Q_2 and Q_3 outputs as shown in the function table. As a 3-bit ripple counter the input count pulses are applied to input \overline{CP}_1 .

Simultaneous frequency divisions of 2, 4 and 8 are available at the Q_1 , Q_2 and Q_3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

SYMBOL	PARAMETER	CONDITIONS	TYF			
STMBUL	FARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0	- C _L = 15 pF; V _{CC} = 5 V	12	15	ns	
f _{max}	maximum clock frequency	$-C_{L} = 15 \text{pr}, v_{CC} = 5 \text{v}$	100	77	MHz	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	22	22	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

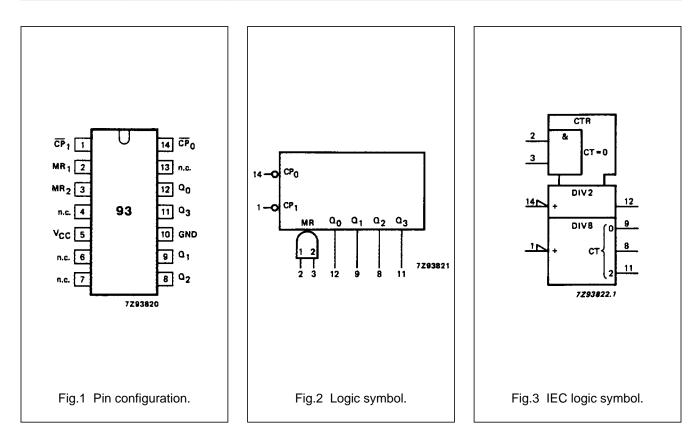
 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

 C_L = output load capacitance in pF; V_{CC} = supply voltage in V

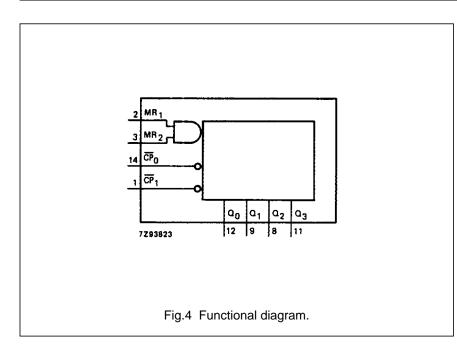
2. For HC the condition is V_1 = GND to V_{CC} ; for HCT the condition is V_1 = GND to V_{CC} – 1.5 V

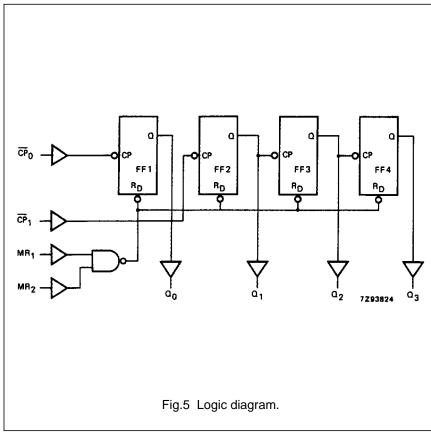

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT93

PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION	-
1	CP ₁	clock input 2 nd , 3 rd and 4 th section (HIGH-to-LOW, edge-triggered)	
2, 3	MR ₁ , MR ₂	asynchronous master reset (active HIGH)	
4, 6, 7, 13	n.c.	not connected	
5	V _{CC}	positive supply voltage	
10	GND	ground (0 V)	
12, 9, 8, 11	Q_0 to Q_3	flip-flop outputs	
14	CP ₀	clock input 1 st section (HIGH-to-LOW, edge-triggered)	



74HC/HCT93

74HC/HCT93

4-bit binary ripple counter

FUNCTION TABLE

COUNT		OUT	PUTS			
COUNT	Q_0	Q ₁	Q ₂	Q_3		
0	L	L	L	L		
1 2 3	Н	L	L L L	L L L		
2	L	н	L	L		
3	н	Н	L	L		
4	L H	L	Н	L L L		
5 6 7	Н	L	Н	L		
6	L H	H	Н	L		
1	н	Н	н	L		
8	1			н		
8 9	L H	L	L L L	н		
10	L	H	L	H		
11	L H	Н	L	Н		
12	L H	L L	н	н		
13	Н	L	Н	н		
14	L	н	Н	н		
15	Н	Н	Н	Н		

Notes

1. Output Q_0 connected to \overline{CP}_1 . H = HIGH voltage level L = LOW voltage level

MODE SELECTION

1	SET UTS	OUTPUTS							
MR ₁	MR ₂	Q ₀	Q ₁	Q ₂	Q_3				
Н	н	L	L	L	L				
L	н		cou	int					
н	L	count							
L	L	count							

74HC/HCT93

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TES	T CONDITIONS	
	PARAMETER	74HC										
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	$\frac{\text{propagation delay}}{\text{CP}_0}$ to Q_0		41 15 12	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_1		49 16 13	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_2		61 22 18	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_3		80 29 23	245 49 42		305 61 52		370 71 63	ns	2.0 4.5 6.0	Fig.6	
t _{PHL}	propagation delay MR _n to Q _n		50 18 14	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.7	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	
t _{rem}	removal time MR_n to \overline{CP}_0 , \overline{CP}_1	50 10 9	8 3 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.7	
t _W	pulse width $\overline{CP}_0, \overline{CP}_1$	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _W	master reset pulse width MR _n	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	
f _{max}	maximum clock pulse frequency CP ₀ , CP ₁	6.0 30 35	30 91 108		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6	

74HC/HCT93

DC CHARACTERISTICS FOR 74HCT

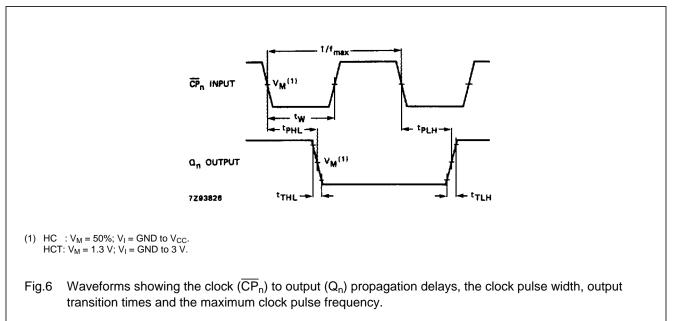
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

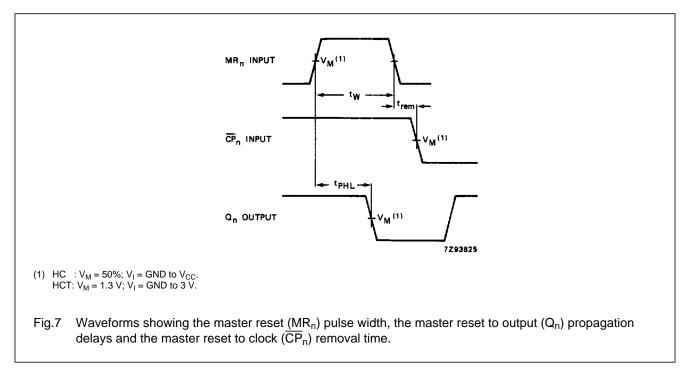
Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\overline{CP}_0, \overline{CP}_1$	0.60
MR _n	0.40


AC CHARACTERISTICS FOR 74HCT


GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C) 74HCT								TEST CONDITIONS	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0		18	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_1		18	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_2		24	46		58		69	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_1 to Q_3		30	58		73		87	ns	4.5	Fig.6
t _{PHL}	propagation delay MR _n to Q _n		17	33		41		50	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _{rem}	removal time MR_n to \overline{CP}_0 , \overline{CP}_1	10	3		13		15		ns	4.5	Fig.7
t _W	pulse width $\overline{CP}_0, \overline{CP}_1$	16	7		20		24		ns	4.5	Fig.6
t _W	master reset pulse width MR _n	16	5		20		24		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency CP ₀ , CP ₁	30	70		24		20		MHz	4.5	Fig.6

74HC/HCT93

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.