

Absolute Maximum Ratings(Note 1) (Note 2)
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$
DC Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$
DC Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$
Clamp Diode Current $\left(\mathrm{I}_{\mathrm{IK}}, \mathrm{I}_{\mathrm{OK}}\right)$
DC Output Current, per pin $\left(\mathrm{I}_{\mathrm{OUT}}\right)$
DC V_{CC} or GND Current, per pin $\left(\mathrm{I}_{\mathrm{CC}}\right)$
Storage Temperature Range ($\left.\mathrm{T}_{\mathrm{STG}}\right)$
Power Dissipation ($\left.\mathrm{P}_{\mathrm{D}}\right)$
(Note 3)
S.O. Package only
Lead Temperature ($\left.\mathrm{T}_{\mathrm{L}}\right)$
(Soldering 10 seconds)
-0.5 to +7.0 V
-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$ -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ $\pm 20 \mathrm{~mA}$ $\pm 35 \mathrm{~mA}$ $\pm 70 \mathrm{~mA}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 600 mW 500 mW
(Soldering 10 seconds

Recommended Operation Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	6	V
DC Input or Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\left(\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{OUT}}\right)$			

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	Units
				Typ	Guaranteed Limits		
V_{IH}	Minimum HIGH Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	V
V_{IL}	Maximum LOW Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \\ \hline \end{gathered}$	V
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {OUT }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V
	Q'H	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\text {OUT }} \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {Out }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	V
	Q_{A} thru Q_{H}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{l}_{\text {out }} \leq 6.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {out }}\right\| \leq 7.8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	V
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OuT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
	Q'H	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\text {Out }} \leq 4.0 \mathrm{~mA} \\ & \mathrm{Il}_{\text {Out }} \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	V
	Q_{A} thru Q_{H}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\text {Out }} \leq 6.0 \mathrm{~mA} \\ & \left\|\mathrm{l}_{\text {out }}\right\| \leq 7.8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	V
I_{N}	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {OUT }}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		8.0	80	$\mu \mathrm{A}$

Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case V_{H} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current ($I_{\mathrm{N}}, \mathrm{I}_{\mathrm{CC}}$, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (unless otherwise specified)							
Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ	Guaranteed Limits		
${ }_{\text {f MAX }}$	Maximum Operating Frequency	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 6 \\ 30 \\ 35 \\ \hline \end{gathered}$	$\begin{aligned} & 4.8 \\ & 24 \\ & 28 \end{aligned}$	MHz
$\overline{t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}}$	Maximum Propagation Delay from SCK to Q_{H}^{\prime}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 150 \\ 30 \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} \hline 185 \\ 37 \\ 31 \\ \hline \end{gathered}$	ns
$\overline{t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}}$	Maximum Propagation Delay from RCK to Q_{A} thru Q_{H}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline 185 \\ & 250 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 37 \\ & 50 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 25 \\ & 34 \end{aligned}$	$\begin{aligned} & \hline 31 \\ & 43 \end{aligned}$	ns
$\overline{\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}}$	Maximum Propagation Delay from $\overline{\text { SCLR }}$ to Q_{H}^{\prime}		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 150 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} 185 \\ 37 \\ 31 \end{gathered}$	ns
${ }_{\text {t }{ }_{\text {PHL }}}$	Maximum Propagation Delay from $\overline{R C L R}$ to Q_{A} thru Q_{H}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \end{aligned}$	$\begin{gathered} 155 \\ 31 \\ 26 \end{gathered}$	ns
		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 200 \\ 40 \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ 50 \\ 43 \end{gathered}$	ns
$\mathrm{t}_{\text {s }}$	$\overline{\text { SCLR }}$ LOW to RCK		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 50 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & \hline 63 \\ & 13 \\ & 11 \end{aligned}$	ns
t_{s}	$\overline{\mathrm{RCLR}}$ HIGH to SCK		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$	ns
t_{s}	Minimum Setup Time from SER to SCK		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns
t_{R}	Minimum Removal Time from $\overline{S C L R}$ to SCK		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \end{aligned}$	ns
t_{s}	Minimum Setup Time from SCK to RCK		$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns
${ }_{\text {th }}$	Minimum Hold Time SER to SCK		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
${ }_{\text {tw }}$	Minimum Pulse Width of SCK or SCLR or RCK or $\overline{\text { RCLR }}$		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 20 \\ & 17 \end{aligned}$	$\begin{gathered} 125 \\ 25 \\ 21 \end{gathered}$	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Time, Clock		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \hline 1000 \\ 500 \\ 400 \\ \hline \end{array}$	$\begin{gathered} \hline 1000 \\ 500 \\ 400 \\ \hline \end{gathered}$	ns
$\overline{{ }_{\text {THL }}, \mathrm{t}_{\text {TLH }}}$	Maximum Output Rise and Fall Time $Q_{A}-Q_{H}$		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 60 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	ns
$\overline{\dagger_{\text {THL }}, \mathrm{t}_{\text {TLH }}}$	Maximum Output Rise and Fall Time Q_{H}^{\prime}		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	ns

www.fairchildsemi.com

AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ts
				Typ	Guaranteed Limits		
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance, Outputs Enabled (Note 5)	$\begin{aligned} & \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{CC}} \\ & \overline{\mathrm{G}}=\mathrm{GND} \end{aligned}$		$\begin{gathered} 90 \\ 150 \end{gathered}$			pF
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			5	10	10	pF
$\mathrm{C}_{\text {OUT }}$	Maximum Output Capacitance			15	20	20	pF

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
