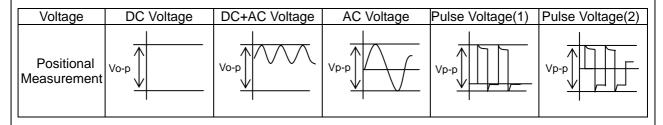
muRata

Reference Specification

DEB Series Lead Type Disc Ceramic Capacitors of Class 2 for General Purpose

Product specifications in this catalog are as of Dec. 2017, and are subject to change or obsolescence without notice.


Please consult the approval sheet before ordering. Please read rating and Cautions first.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. The allowable frequency should be in less than 300kHz in sine wave. Applied voltage should be the load such as self-generated heat is within 20 °C <u>on the condition of</u> <u>atmosphere temperature 25 °C.</u> When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. While, in case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers.

3. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

4. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

5. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron tip : 400 °C max.

Soldering iron wattage : 50W max.

Soldering time : 3.5 s max.

6. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

7. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

8. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors

in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

- Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

- Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

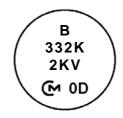
- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

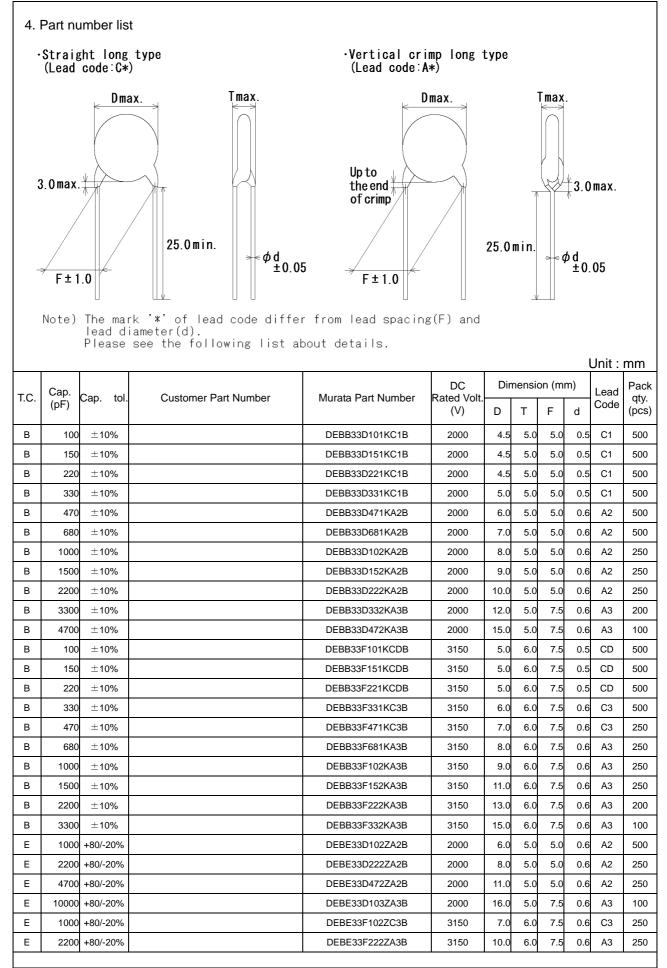
Γ

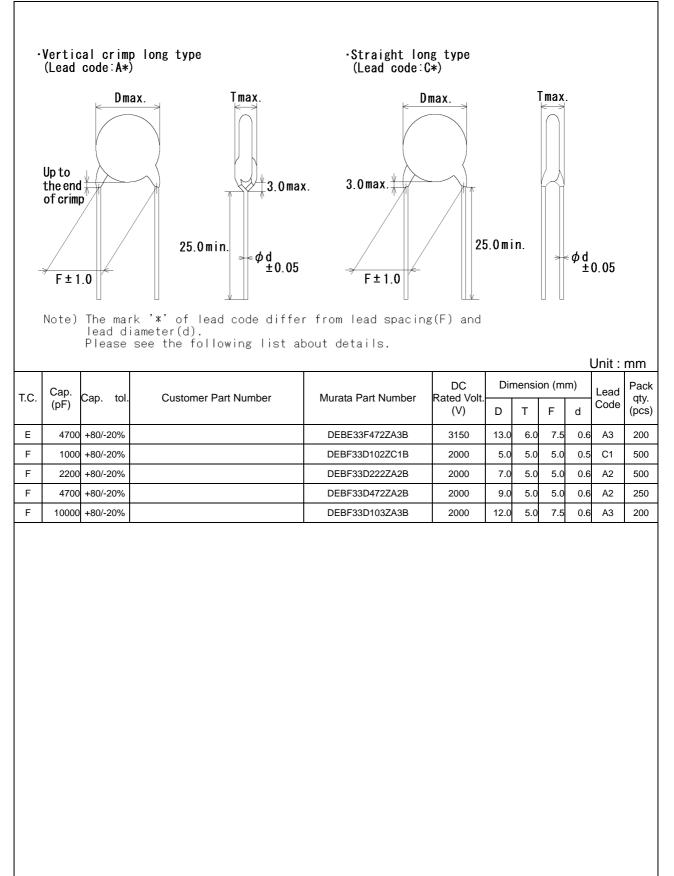
Class 2 of DE Do not use the for electric veh	B series used f ese products in	or Genera any autor	al Electric econotive powe				ratings and battery chargers
2. Rating 2-1. Operating -25							
2-2. Part numb	er configuratio	n					
ex.) <u>DEB</u> Series	<u>B3</u> Temperature characteristic	<u>3D</u> Rated voltage	<u>332</u> Capacitan	ce Capacitance tolerance	<u>A3</u> Lead code	B Packing style code	Individual specification
•Tempe	rature characte	eristic					
		ode	Te	mperature chara	cteristic		
		33		<u> </u>			
		<u>-3</u>		<u> </u>			
		-	specification	on [Specificatio	n and te		1
			specification			st methous].
Rated	voltage						
• Nated		ode		Rated voltage	1e		
		BD		DC2kV	,0		
		3F		DC3.15kV			
ex.	e first two digits) In case of 33 33	2. ×10 ² = 33		ures ; the last dio	git denot	es the multip	blier of 10 in pF.
-	itance toleranc ase refer to [F		er list].				
• Lead o							
		ode	1/0-1	Lead style			
		∖ ∗ C∗		cal crimp long ty	pe		
		<u>_*</u> 3*		ght long type cal crimp short ty	/De		
		<u>⊃*</u>)∗		ght short type	, PC		
		V*		cal crimp taping	type		
		• ⊃∗		ght taping type	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	* Please refer	to [Part					
Sol	der coated cop	oper wire i	s applied fo	r termination.			

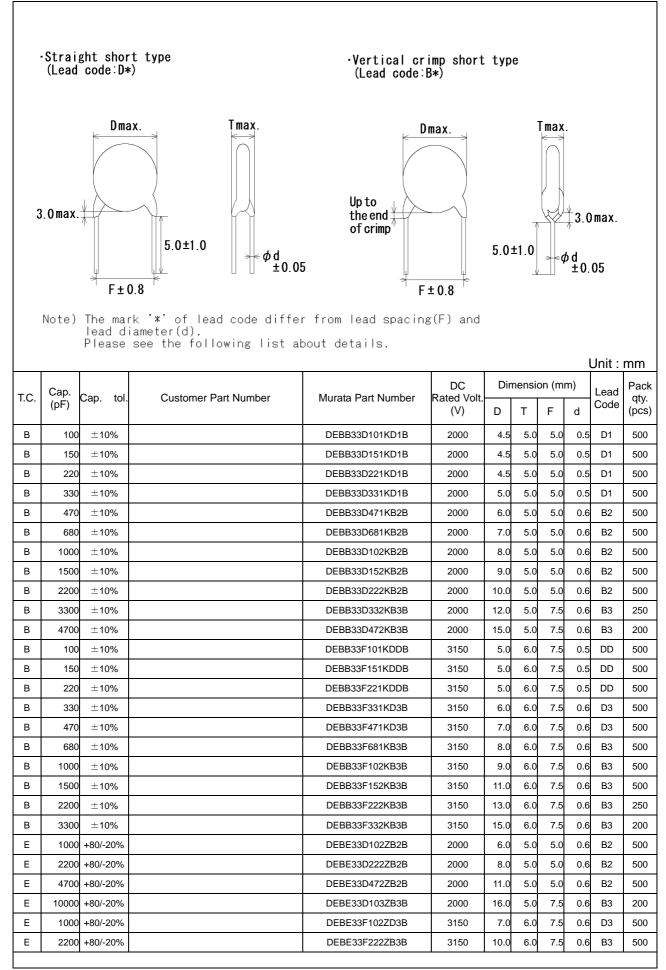
Packing style code

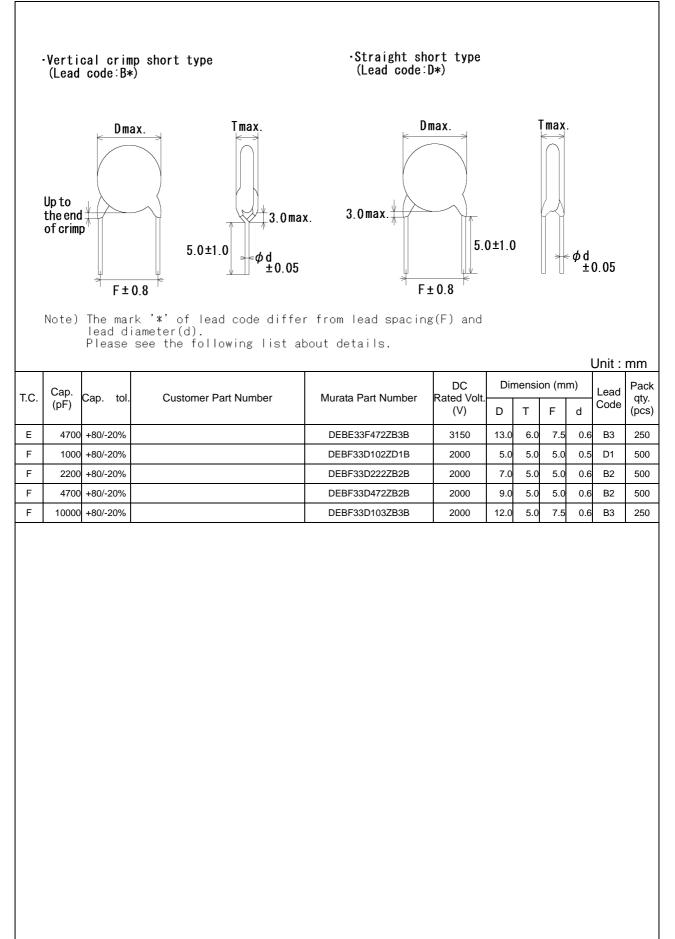
Code	Packing type
В	Bulk type
A	Ammo pack taping type

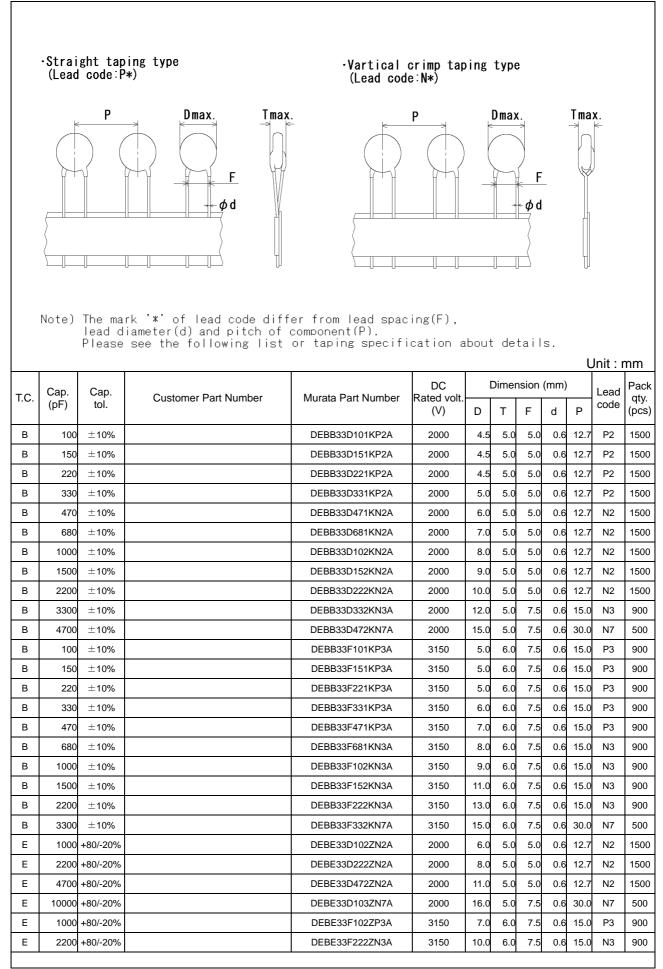

• Individual specification

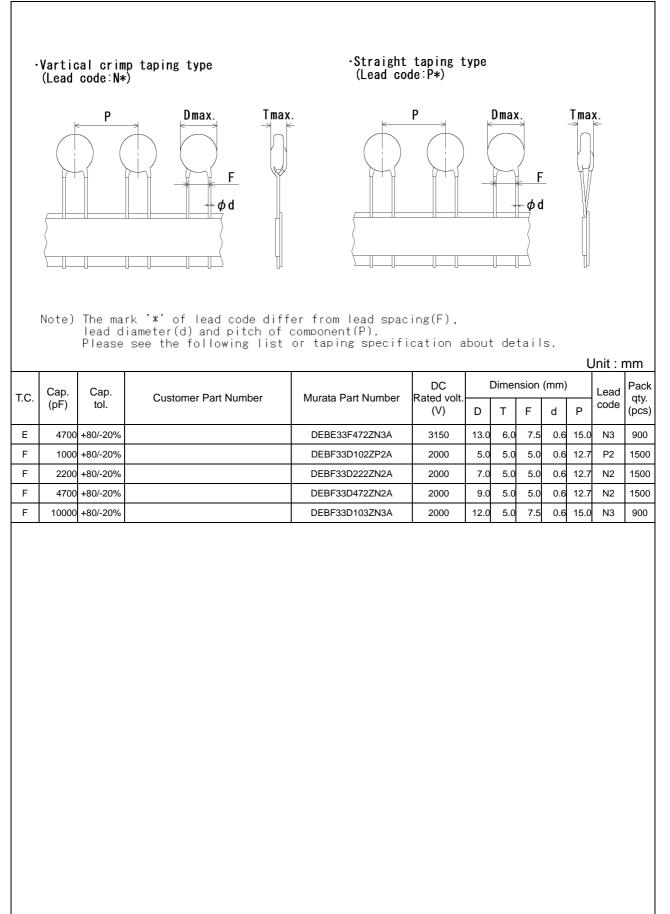

In case part number cannot be identified without 'individual specification', it is added at the end of part number.


3. Marking

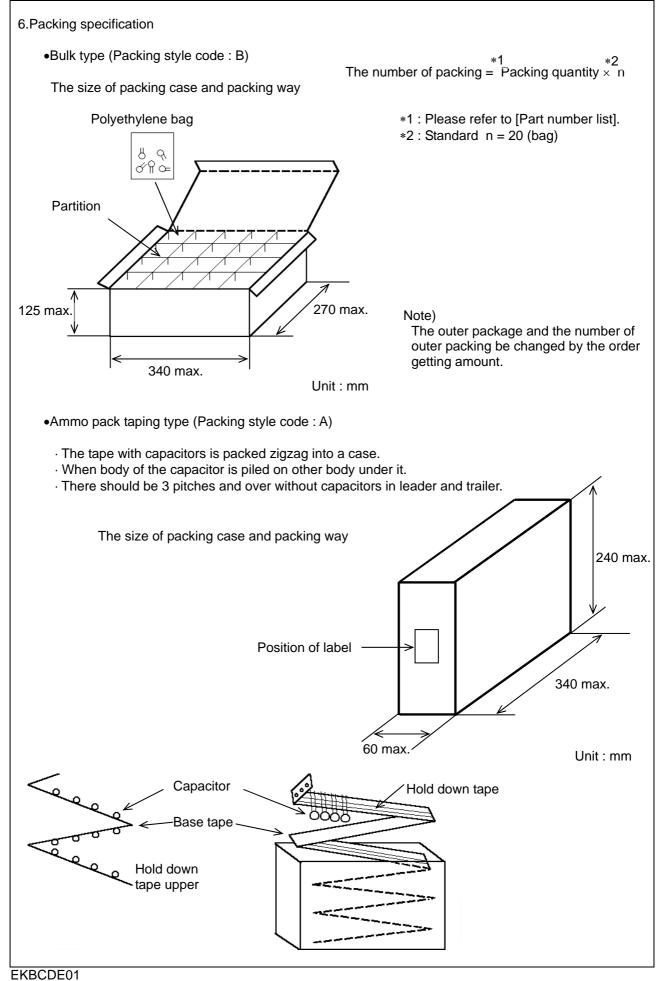

Temperature characteristic	Letter code Identified by code for char. B or char. E.
	(Omitted for maximum body diameter ϕ 9mm and under)
Nominal capacitance	: 3 digit system
Capacitance tolerance	: Code(Omitted for maximum body diameter ϕ 6mm and under)
Rated voltage	: Letter code(In case of DC3.15kV, marked with 3KV)
Company name code	: Abbreviation 🕞
	(Omitted for maximum body diameter ϕ 9mm and under)
Manufacturing year	: Letter code(The last digit of A.D. year.)
	(Omitted for maximum body diameter ϕ 5mm and under)
Manufacturing month	: Code(Omitted for maximum body diameter ϕ 5mm and under) (Feb./Mar. $\rightarrow 2$ Aug./Sep. $\rightarrow 8$ Apr./May $\rightarrow 4$ Oct./Nov. $\rightarrow 0$ Jun./Jul. $\rightarrow 6$ Dec./Jan. $\rightarrow D$

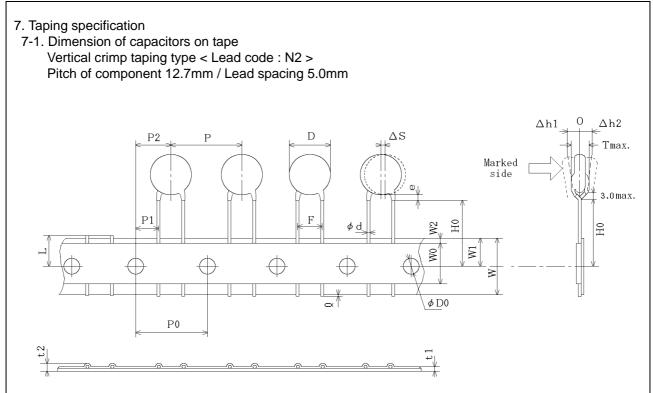

(Example)





Reference only

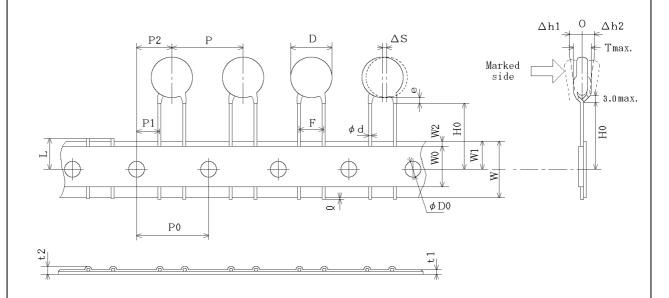

				lefence only					
	ecification and test			· · ·	1		-		
No.			Item Specification rance and dimensions No marked defect on appearance				Test m		
1	Appearance and o	dimensions							naked eyes
			form and dimen				ce of defea		
				[Part number list].					n slide caliper
2	Marking	•	To be easily leg	ible.	The capacitor should be inspected by naked eyes.				
3	Dielectric	Between lead	No failure.		The capacitor should not be damaged when D				
	strength	wires							are applied
							wires for		
					(Charge	/Discharg	ge current⊴	≤50mA.)	
		Body	No failure.	No failure.					er with metal
		insulation					1mm so th		ead wire,
					shortcirc	cuited, is	kept about	2mm	
					off the b	alls as sh	Iown		M
						gure, and			¥.
						of 1.3kV i			Λ .
						for 1 to 5		000	About
						n capacito		- Contraction of the contraction	00000000000000000000000000000000000000
						nd small n		26	Metal bal
					(Charge	/Discharg	ge current⊴	≤50mA.)	
4	Insulation	Between lead	10000MΩ min.		The insu	ulation res	sistance sł	nould be n	neasured with
	Resistance (I.R.)	wires			DC500+	50V with	in 60±5 s d	of charging	g.
5	Capacitance		Within specified	l tolerance.	The cap	acitance	should be	measured	d at 20°C with
					1±0.2kH	Iz and AC	5V(r.m.s.)	max	
6	Dissipation Factor	r (D.F.)	Char. B,E : 2.5% max.						sured at 20°C
		. ,	Char. F : 5.0% max.		with 1±0).2kHz an	d AC5V(r.	m.s.) max	
7	Temperature char	acteristic	Char. B : Within $\pm 10\%$		The cap	acitance	measurem	nent shoul	d be made at
	•		Char. E : Within +20/-55% Char. F : Within +30/-80% Pre-treatment : Capacitor should b				ed in Table		
					be stored at 85±2°C for 1 h, then placed at *room				
			Condition for 24±2		n pelore in	iiliai mea	surements	•	· · · · · · · · ·
			Step		1	2	3	4	5
				Temp.(°C)	20±2	-25±3	20±2	85±2	20±2
		1							
8	Strength of lead	Pull	Lead wire shoul				igure at rig		
			Capacitor shoul	d not be broken.			citor and a		
							to each lea		the
							the capac		
							diameter	0.5mm),	••+
			_			p it for 10			
		Bending							o 5N (2.5N fo
									bent 90° at th
									returned to it
							and bent 9		
							te of one l		
9	Vibration	Appearance	No marked defe				ould be firr		
	resistance	Capacitance	Within specified						a frequency
		D.F.	Char. B,E : 2.5%						mplitude, with
			Char. F : 5.0%	6 max.	about a 1min rate of vibration change from 10Hz				
					to 55Hz and back to 10Hz. Apply for a total of 6 h; 2 h each in 3 mutually perpendicular directions.				
		<u> </u>							
10	Solderability of lea	ads	Lead wire shoul		The lead	d wire of a	a capacito	r should b	e dipped into
				oated on the axial	ethanol	solution of	of 25wt% r	osin and t	hen into
			direction over 3		molten solder for 2 ± 0.5 s. In both cases the depth dipping is up to about 1.5 to 2mm from the root of				
			circumferential	direction.					
					lead wires.				
						Temp. of solder :			
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)					
							Eutectic So		- ,
*	"room condition" Te	mperature: 15 to 1	35°C. Relative hum	nidity: 45 to 75% A	tmospheri	c pressu	e: 86 to 10)6kPa	
					uncopriori	o procoui	0.00101		


Reference only

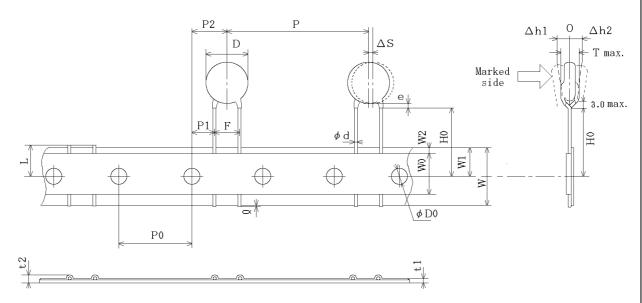
			Reference only	
No.	Item		Specification	Test method
11	Soldering effect	Appearance	No marked defect.	The lead wire should be immersed into the melted
	(Non-preheat)	Capacitance	Char. B: Within ± 5%	solder of 350 \pm 10°C (Body of ϕ 5 and under:
		change	Char. E : Within ± 15%	270±5°C) up to about 1.5 to 2.0mm from the
			Char. F: Within ± 20%	main body for 3.5 ± 0.5 s. (Body of ϕ 5 and under:
		Dielectric	Per item 3.	5±0.5 s.)
		strength		Pre-treatment : Capacitor should be stored at
		(Between		85±2°C for 1 h, then placed at
		lead wires)		* room condition for 24 ± 2 h
		,		before initial measurements.
				Post-treatment : Capacitor should be stored for
				4 to 24 h at * room condition.
12	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at
	(On-preheat)	Capacitance	Char. B : Within + 5%	120+0/-5°C for 60+0/-5 s.
	(change	Char. E : Within \pm 15%	Then, as in figure, the lead wires should be
		onango	Char. F : Within \pm 20%	immersed solder of 260+0/-5°C up to 1.5 to
		Dielectric	Per item 3.	2.0mm from the root of terminal for 7.5+0/-1 s.
			Per item 3.	
		strength (Between		Thermal Capacitor
		lead wires)		insulating () [#]
		icad wires)		
				- → ▲ Constanting → ▲ Molten
				<u> </u>
				Pre-treatment : Capacitor should be stored at
				85±2°C for 1 h, then placed at
				* room condition for 24±2 h
				before initial measurements.
				Post-treatment : Capacitor should be stored for
				4 to 24 h at * room condition.
13	Humidity	Appearance	No marked defect.	Set the capacitor for 500 +24/-0 h at 40±2°C in
	(Under steady	Capacitance	Char. B : Within ±10%	90 to 95% relative humidity.
	state)	change	Char. E : Within ±20%	Pre-treatment : Capacitor should be stored at
			Char. F : Within ±30%	85±2°C for 1 h, then placed at
		D.F.	Char. B,E : 5.0% max.	* room condition for 24±2 h
			Char. F : 7.5% max.	before initial measurements.
		I.R.	1 000MΩ min.	Post-treatment : Capacitor should be stored for 1
				to 2 h at * room condition.
14	Humidity loading	Appearance	No marked defect.	Apply the rated voltage for 500 +24/-0 h at
		Capacitance	Char. B : Within ±10%	40±2°C in 90 to 95% relative humidity.
		change	Char. E : Within ±20%	(Charge/Discharge current≤50mA.)
			Char. F : Within ±30%	Pre-treatment : Capacitor should be stored at
		D.F.	Char. B,E : 5.0% max.	85±2°C for 1 h, then placed at
			Char. F : 7.5% max.	* room condition for 24±2 h
		I.R.	500MΩ min.	before initial measurements.
				Post-treatment : Capacitor should be stored at
				85±2°C for 1 h, then placed at
				* room condition for 24±2 h.
15	Life	Appearance	No marked defect.	Apply a DC voltage of 150% of the rated voltage
		Capacitance	Char. B: Within ±10%	for 1 000 +48/-0 h at $85\pm2^{\circ}$ C, and relative
		change	Char. E : Within ±20%	humidity of 50% max
			Char. F: Within ±30%	(Charge/Discharge current≤50mA.)
		D.F.	Char. B,E : 4.0% max.	Pre-treatment : Capacitor should be stored at
			Char. F : 7.5% max.	85±2°C for 1 h, then placed at
		I.R.	2000MΩ min.	* room condition for 24±2 h
				before initial measurements.
				Post-treatment : Capacitor should be stored at
				85±2°C for 1 h, then placed at
* "		AF (* room condition for 24±2 h.
* "	room condition" Temp	perature: 15 to 3	5°C, Relative humidity: 45 to 75%, A	tmospheric pressure: 86 to 106kPa

Reference only

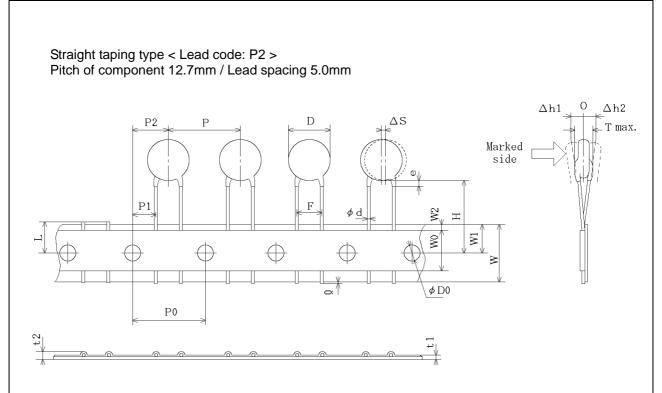
No. 16	ltem		Creation				
			Specification		Test m	ethod	
1	Temperature and	Appearance	No marked defect.	The ca	pacitor should be s	subjected to	0
	Immersion cycle	Capacitance	Char. B : Within ±10%		erature cycles, the	n consecut	tively to
		change	Char. E : Within ±20%	2 imme	ersion cycles.		
			Char. F : Within ±30%		erature cycle>		
		D.F.	Char. B,E : 4.0% max.	Step			
			Char. F : 7.5% max.	1	-25±3	30 m	
		I.R.	2000MΩ min.	2	Room Temp.	3 mi	
		Dielectric	Per item 3.	3	+85±3	30 m	
		strength		4	Room Temp.		
		(Between				Cycle	e time : 5 cycle
		lead wires)		<imme< td=""><td>rsion cycle></td><td></td><td></td></imme<>	rsion cycle>		
				Cton		Time	Immersion
				Step	Temperature(°C)	Time	water
				1	+65+5/-0	15 min	Clean water
				2	0±3	15 min	Salt water
			5°C, Relative humidity: 45 to 75%, At	Post-tr	* room o before eatment : Capacite 4 to 24 l	or should b for 1 h, the condition for initial mea or should b h at * room	en placed at or 24±2 h asurements.



Unit : mm


Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7±1.0	
Pitch of sprocket hole	P0	12.7±0.3	
Lead spacing	F	0.8 5.0±0.2	
Length from hole center to component center	P2	6.35±1.3	
Length from hole center to lead	P1	3.85±0.7	Deviation of progress direction
Body diameter	D	Please refer to [P	art number list].
Deviation along tape, left or right	ΔS	0±1.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	H0	$18.0\pm_{0}^{2.0}$	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φD0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness
Deviation across tape, front	∆h1	1.0	
Deviation across tape, rear	∆h2	1.0 max.	
Portion to cut in case of defect	L	11.0 ± ⁰ _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of a	crimp
Body thickness	Т	Please refer to [P	art number list].

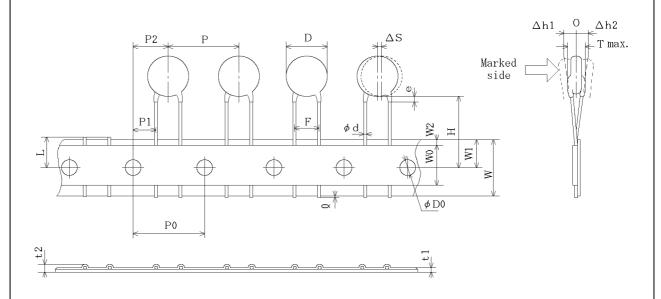
Vertical crimp taping type < Lead code : N3 > Pitch of component 15.0mm / Lead spacing 7.5mm


	·		Unit : mm
Item	Code	Dimensions	Remarks
Pitch of component	Р	15.0±2.0	
Pitch of sprocket hole	P0	15.0±0.3	
Lead spacing	F	7.5±1.0	
Length from hole center to component center	P2	7.5±1.5	
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	HO	$18.0\pm_{0}^{2.0}$	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φD0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1		
Deviation across tape, rear	∆h2	2.0 max.	
Portion to cut in case of defect	L	11.0 ± ⁰ _{1.0}	
Hold down tape width	WO	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of	crimp
Body thickness	Т	Please refer to [Part number list].

Vertical crimp taping type < Lead code : N7 > Pitch of component 30.0mm /Lead spacing 7.5mm

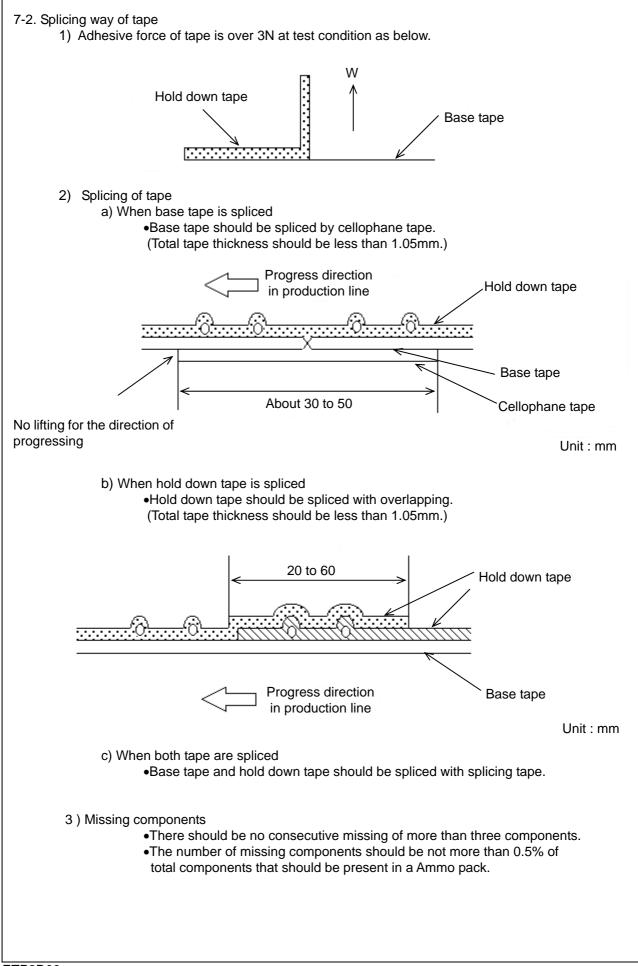
Unit : mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	30.0±2.0	
Pitch of sprocket hole	P0	15.0±0.3	
Lead spacing	F	7.5±1.0	
Length from hole center to component center	P2	7.5±1.5	
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend.
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	HO	$18.0\pm^{2.0}_{0}$	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φD0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1	0.0	
Deviation across tape, rear	∆h2	2.0 max.	
Portion to cut in case of defect	L	11.0 ± ⁰ _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of	crimp
Body thickness	Т	Please refer to [Part number list].



Unit : mm

		1	Unit . mm
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7±1.0	
Pitch of sprocket hole	P0	12.7±0.3	
Lead spacing	F	$5.0\pm^{0.8}_{0.2}$	
Length from hole center to component center	P2	6.35±1.3	
Length from hole center to lead	P1	3.85±0.7	Deviation of progress direction
Body diameter	D	Please refer to [F	Part number list].
Deviation along tape, left or right	ΔS	0±1.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	н	20.0± ^{1.5} _{1.0}	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φD0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1	1.0 mov	
Deviation across tape, rear	∆h2	1.0 max.	
Portion to cut in case of defect	L	11.0 ± ⁰ _{1.0}	
Hold down tape width	WO	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	3.0 max.	
Body thickness	Т	Please refer to [F	Part number list].


ETP1P20101A

Straight taping type < Lead code : P3 > Pitch of component 15.0mm / Lead spacing 7.5mm

Unit : mm

			Unit . Init
ltem	Code	Dimensions	Remarks
Pitch of component	Р	15.0±2.0	
Pitch of sprocket hole	P0	15.0±0.3	
Lead spacing	F	7.5±1.0	
Length from hole center to component center	P2	7.5±1.5	
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	н	$20.0\pm^{1.5}_{1.0}$	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φD0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1	0.0	
Deviation across tape, rear	∆h2	2.0 max.	
Portion to cut in case of defect	L	11.0 ± ⁰ _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	3.0 max.	
Body thickness	Т	Please refer to [Part number list].

EU RoHS

This products of the following crresponds to EU RoHS.

RoHS

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)