FAIRCHILD

SEMICONDUCTOR

MM74HC373 3-STATE Octal D-Type Latch

General Description

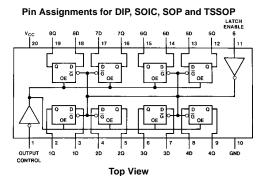
The MM74HC373 high speed octal D-type latches utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads. Due to the large output drive capability and the 3-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system.

When the LATCH ENABLE input is HIGH, the Q outputs will follow the D inputs. When the LATCH ENABLE goes LOW, data at the D inputs will be retained at the outputs until LATCH ENABLE returns HIGH again. When a high logic level is applied to the OUTPUT CONTROL input, all outputs go to a high impedance state, regardless of what

signals are present at the other inputs and the state of the storage elements.

The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.

Features


- Typical propagation delay: 18 ns
- Wide operating voltage range: 2 to 6 volts
- Low input current: 1 μA maximum
- Low quiescent current: 80 μA maximum (74 Series)
- Output drive capability: 15 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC373WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HC373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC373MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC373N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Output Control	Latch Enable	Data	373 Output
L	н	Н	Н
L	н	L	L
L	L	х	Q ₀
н	Х	х	Z

L = LOW Level

 $\mathbf{Q}_0 = \text{Level}$ of output before steady-state input conditions were established. Z = High Impedance

© 1999 Fairchild Semiconductor Corporation DS005335.prf

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	–1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V _{CC} or GND Current, per pin (I_{CC})	±70 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

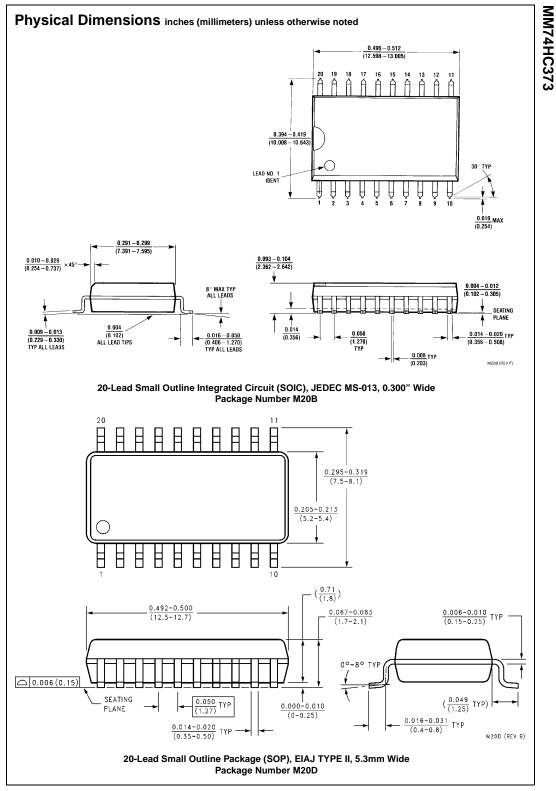
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} ,V _{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those	values b	eyond whi	ch dam-

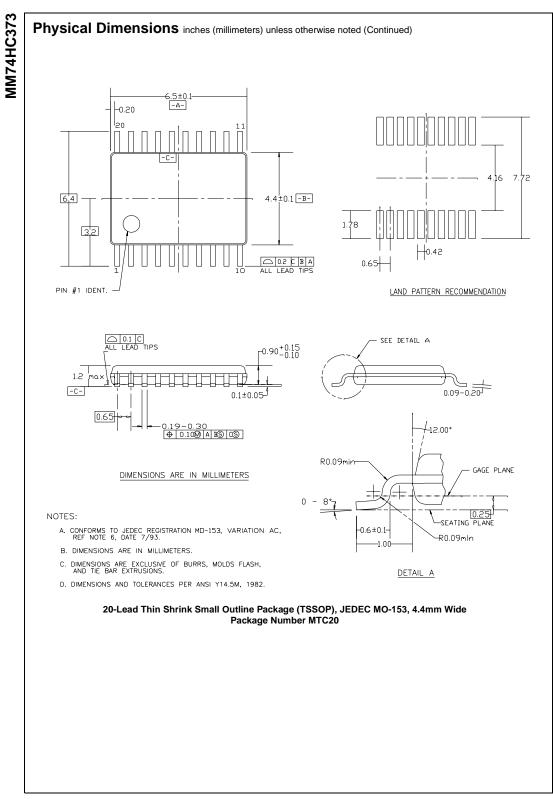
age to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground.

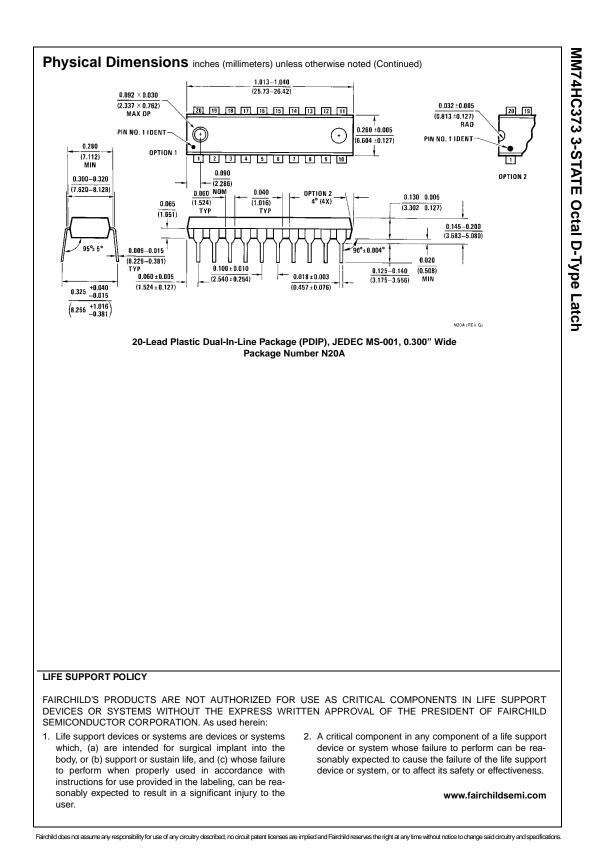
Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		$T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 12^{\circ}$		Units
Symbol	Faiameter	Conditions	• CC	Тур	Guaranteed Limits			
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤ 7.8 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
	Current							
I _{OZ}	Maximum 3-STATE	$V_{IN} = V_{IH} \text{ or } V_{IL}, \text{ OC} = V_{IH}$	6.0V		±0.5	±5	±10	μA
	Output Leakage	$V_{OUT} = V_{CC} \text{ or } GND$						
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$						


Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


	$T_A = 25^{\circ}C, t_f = t_f = 6 \text{ ns}$		I			T		Guaranteed			
Symb	ol Parame	Parameter		Conditions			Тур	Guaranteed Limit	Ur	Units	
t _{PHL} , t _{PLH}	LH Maximum Propagation Delay, Data to Q		C _L = 45 pF			18	25		ns		
t _{PHL} , t _{PLH}	Maximum Propagation	Delay, LE to Q	C _L = 45 pF				21	30	r	IS	
t _{PZH} , t _{PZL}	Maximum Output Enal	ole Time	$R_L = 1 k\Omega$			20	28	28 n:			
			$C_{L} = 45$								
t _{PHZ} , t _{PLZ}	Maximum Output Disa	ble lime	$R_L = 1 k$				18	25	r	IS	
ts	Minimum Set Up Time		C _L = 5 p)F				5	r	IS	
t _H	Minimum Hold Time							10		IS	
t _W	Minimum Pulse Width						9	16	r	IS	
V _{CC} = 2.0	lectrical Charac $D=6.0V, C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$	s (unless otherwise			T△ =	25°C	$T_{\Delta} = -40$ to 8	5°C T_A = −55 to	125°C		
Symbol	Parameter	Conditio	ns	v _{cc}	Тур			ed Limits		Unit	
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF		2.0V	50	150	188	225		ns	
	Delay, Data to Q	C _L = 150 pF		2.0V	80	200	250	300		ns	
		$C_L = 50 \text{ pF}$	T	4.5V	22	30	37	45		ns	
		$C_{L} = 150 \text{ pF}$ $C_{L} = 50 \text{ pF}$		4.5V 6.0V	30 19	40 26	50 31	60 39		ns ns	
		$C_{L} = 30 \text{ pr}$ $C_{L} = 150 \text{ pF}$		6.0V	26	35	44	53		ns	
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF		2.0V	63	175	220	263		ns	
	Delay, LE to Q	$C_L = 150 \text{ pF}$		2.0V	110	225	280	338		ns	
		$C_L = 50 \text{ pF}$		4.5V	25	35	44	52		ns	
		C _L = 150 pF		4.5V	35	45	56	68		ns	
		C _L = 50 pF		6.0V 6.0V	21	30 39	37 49	45		ns	
t _{PZH} , t _{PZL}	Maximum Output	$C_L = 150 \text{ pF}$ $R_L = 1 \text{ k}\Omega$		6.UV	28	39	49	59		ns	
+ 210 -F 2L	Enable Time	$C_L = 50 \text{ pF}$		2.0V	50	150	188	225		ns	
		$C_L = 150 \text{ pF}$		2.0V	80	200	250	300		ns	
		$C_L = 50 \text{ pF}$		4.5V	21	30	37	45		ns	
		C _L = 150 pF		4.5V	30	40	50	60		ns	
		C _L = 50 pF		6.0V 6.0V	19 26	26 35	31 44	39 53		ns	
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$C_L = 150 \text{ pF}$ $R_L = 1 \text{ k}\Omega$		2.0V	50	150	188	225		ns ns	
T FILI YEL	Disable Time	$C_L = 50 \text{ pF}$		4.5V	21	30	37	45		ns	
				6.0V	19	26	31	39		ns	
t _S	Minimum Set Up Time			2.0V		50	60	75		ns	
				4.5V		9	13	15		ns	
t	Minimum Hold Time			6.0V 2.0V		9 5	11 5	13		ns	
t _H				2.0V 4.5V		5 5	5	5		ns ns	
				6.0V		5	5	5		ns	
t _W	Minimum Pulse Width			2.0V	30	80	100	120		ns	
				4.5V	10	16	20	24		ns	
		0		6.0V	9	14	18	20		ns	
t _{THL} , t _{TLH}	Maximum Output Rise	C _L = 50 pF		2.0V 4.5V	25 7	60 12	75 15	90		ns	
	and Fall Time			4.5V 6.0V	7 6	12 10	15 13	18 15		ns ns	
C _{PD}	Power Dissipation	(per latch)		0.0 *	3	10	10	10		113	
	Capacitance (Note 5)	$OC = V_{CC}$			30					pF	
		OC = GND			50					pF	
C _{IN}	Maximum Input Capacitance				5	10	10	10		pF	


MM74HC373

AC E	lectrical Characte	eristics (Cont	inued)						
Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_A=-40$ to $85^\circ C$	$T_A = -55$ to $125^{\circ}C$	Units	
Cymbol				Тур		Guaranteed L	imits	onno	
C _{OUT}	Maximum Output			15	20	20	20	pF	
	Capacitance								

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

