YF-S401 flow sensor Technical Documents

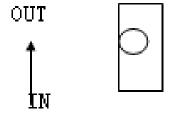
Product Features:

- 1. The appearance of the product compact structure and small size, easy installation.
- 2. Impeller lined with stainless steel beads, never wear.
- 3. seal with the structure under the force never leaks.
- 4. Hall components imported from Germany, and with potting package,

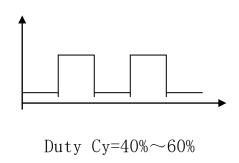
Prevent water, never aging.

5. All the raw materials are in line with ROSH testing standards

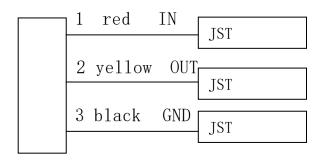
A. Introduction:


Water flow sensor consists of a plastic body, the flow of the rotor assembly and a Hall sensor.

It is installed in the water heater inlet end for detecting the flow of water when the water flow through the rotor assembly,


A magnetic rotor and the flow speed is adapted to change, the Hall sensor output corresponding pulse

Signal feedback to the controller, the controller is determined by the size of the water traffic regulation.


B, A schematic view of the mounting direction

C, Output waveforms:

D. Wiring:

E, Technical Parameters:

Scope: Suitable for automatic gas water heater

Basic parameters

- 1, the lowest rated working voltage DC3.5V-24V
- 2, the maximum operating current of 15 mA (DC 5V)
- 3, the working voltage range DC 5 $^{\sim}$ 18 V
- 4, load capacity ≤ 10 mA (DC 5V)
- 5, temperature range ≤80 ℃
- 6, Operating humidity 35% $^{\sim}$ 90% RH (no condensation state)
- 7, allowing hydraulic pressure 1.75Mpa the following
- 8. Storage Temperature -25 $^{\sim}$ + 80 $^{\circ}$ C
- 9, storage humidity 25% $^{\sim}$ 95% RH

- 1, the output pulse high> DC 4.5 V (input voltage DC 5 V)
- 2, the output pulse is low <DC 0.5 V (input voltage DC 5 V)
- 3, precision

(Flow rate - pulse output) 0.3 $^{\sim}$ 6L / min \pm 3%

- 4, the output pulse duty cycle of 50 \pm 10%
- 5, the output rise time $0.04\mu S$
- 6, the output fall time $0.18\mu S$
- 7, flow pulse characteristics proficiency test pulse frequency (Hz) = $[98 * Q] \pm 3\%$ (proficiency testing) (Q is flow rate L / min)
- 8, impact-resistant product packaging, from a height of 50cm X, Y, Z direction of the free fall to the concrete surface, without exception, Variation within 5% accuracy.
- 9, insulation resistance and the Hall sensor insulation resistance $100M\Omega$ or more between the copper body. (DC 500V)
- 10, the heat resistance is placed 48h at 80 \pm 3 °C environment, return to room temperature 1-2h without exception, and parts free of cracks, relaxation, expansion or deformation, changes within 10% accuracy.
- 11, placed in the cold environment of -20 ± 3 °C 48h, return to room temperature 1-2h without exception, and parts free of cracks, relaxation, expansion or deformation, changes within 10% accuracy.
- 12, moisture resistance at 40 \pm 2 °C, relative humidity 90% ~ 95% RH environment placed 72h after removing the insulation resistance 1M Ω or more.
- 13, pull-out strength is applied to one minute 10N tension on the lead, no loose, pull off phenomenon, and no change in performance.
- 14, durability at room temperature, from the inlet through the 0.1MPa pressure to turn 1S, 0.5S off a cycle,

Test 300,000 times without exception.

F, flow Pulse characteristics reference table						
Flow	Pulse	Poor miss	The	The		
quantity	impact		minimum	maximum		
			value			
2	196	± 1.020	192	200		
2.1	153.3	±1.021	201.6	210		
2.2	160.6	±1.022	211.2	220		
2.3	167.9	±1.023	220.8	230		
2.4	175.2	±1.024	230.4	240		
2.5	182.5	±1.025	240	250		
2.6	189.8	±1.026	249.6	260		

2.7	197.1	±1.027	259.2	270
2.8	204.4	±1.028	268.8	280
2.9	211.7	±1.029	278.4	290
3	219	±1.030	288	300
3.1	226.3	±1.031	297.6	310
3.2	233.6	±1.032	307.2	320
3.3	240.9	±1.033	316.8	330
3.4	248.2	±1.034	326.4	340
3.5	255.5	±1.035	336	350
3.6	262.8	±1.036	345.6	360
3.7	270.1	±1.037	355.2	370
3.8	277.4	±1.038	364.8	380
3.9	284.7	±1.039	374.4	390
4	292	±1.040	384	400
4.1	299.3	±1.041	393.6	410
4.2	306.6	±1.042	403.2	420
4.3	313.9	±1.043	412.8	430
4.4	321.2	±1.044	422.4	440
4.5	328.5	±1.045	432	450
4.6	335.8	±1.046	441.6	460
4.7	343.1	±1.047	451.2	470
4.8	350.4	±1.048	460.8	480
4.9	357.7	±1.049	470.4	490
5	365	±1.050	480	500