

DS18b20 Temperature Sensor Module

Introduction:

These 3-wire digital temperature sensors are fairly precise ($\pm 0.5^{\circ}$ C over much of the range) and can give up to 12 bits of precision from the onboard digital-to-analog converter. They work great with any microcontroller using a single digital pin, and you can even connect multiple ones to the same pin, each one has a unique 64-bit ID burned in at the factory to differentiate them. Usable with 3.0-5.0V systems.

Technical specs:

- Unique 1-Wire[®] Interface Requires Only One Port Pin for Communication
- Reduce Component Count with Integrated Temperature Sensor and EEPROM
 - Measures Temperatures from -55°C to +125°C (-67°F to +257°F)
 - ±0.5°C Accuracy from -10°C to +85°C
 - Programmable Resolution from 9 Bits to 12 Bits
 - No External Components Required
- Parasitic Power Mode Requires Only 2 Pins for Operation (DQ and GND)
- Simplifies Distributed Temperature-Sensing Applications with Multidrop Capability
 - Each Device Has a Unique 64-Bit Serial Code Stored in On-Board ROM
- Flexible User-Definable Nonvolatile (NV) Alarm Settings with Alarm Search Command Identifies Devices with Temperatures Outside Programmed Limits
- Available in 8-Pin SO (150 mils), 8-Pin µSOP, and 3-Pin TO-92 Packages

Similar Modules:

There is another module available that uses deferents types of measuring. This module uses the same pin layout and wiring, but has additional current limiting resistors to prevent burnout.

Example of Use:

Materials:

- DS18b20 Temperature Sensor Module
- 3 Jumper Wire

Wiring Instructions:

Wire the pin labeled "S" to pin 11, "--" to pin GROUND, and the middle pin to the 5V pin.

Sketch Instructions:

#include <OneWire.h>

After copying and uploading this code your DS18b20 module should display the temperature in Celsius and Fahrenheit . You can check your temperature valor in the serial monitor.

Sketch Code

```
/* DS18S20 Temperature chip i/o
*/
OneWire ds(10); // on pin 10
void setup(void) {
 // initialize inputs/outputs
 // start serial port
 Serial.begin(9600);
}
void loop(void) {
 byte i;
 byte present = 0;
 byte data[12];
 byte addr[8];
 if ( !ds.search(addr)) {
     //Serial.print("No more addresses.\n");
     ds.reset search();
     return;
 }
 Serial.print("R="); //R=28 Not sure what this is
 for( i = 0; i < 8; i++) {
   Serial.print(addr[i], HEX);
   Serial.print(" ");
 }
 if ( OneWire::crc8( addr, 7) != addr[7]) {
      Serial.print("CRC is not valid!\n");
     return;
  }
 if ( addr[0] != 0x28) {
     Serial.print("Device is not a DS18S20 family device.\n");
     return;
 }
 ds.reset();
 ds.select(addr);
 ds.write(0x44,1);
                            // start conversion, with parasite power on at the end
 delay(1000); // maybe 750ms is enough, maybe not
 // we might do a ds.depower() here, but the reset will take care of it.
 present = ds.reset();
 ds.select(addr);
 ds.write(0xBE);
                          // Read Scratchpad
 Serial.print("P=");
 Serial.print(present, HEX);
 Serial.print(" ");
 for ( i = 0; i < 9; i++) {
                                      // we need 9 bytes
   data[i] = ds.read();
   Serial.print(data[i], HEX);
   Serial.print(" ");
```



```
Serial.print( OneWire::crc8( data, 8), HEX);
Serial.println();
```

Resources & Related Links:

}

http://forum.arduino.cc/index.php/topic,39655.0.html